Cannabis

From Hidden Wiki
Jump to navigation Jump to search

Template:About Template:Pp-move-indef Template:Pp-vandalism Template:Use dmy dates Template:Automatic taxobox

Cannabis (drug)

Cannabis (Template:IPAc-en) is a genus of flowering plants in the family Cannabaceae. The number of species within the genus is disputed. Three species may be recognized: Cannabis sativa, Cannabis indica, and Cannabis ruderalis; C. ruderalis may be included within C. sativa; all three may be treated as subspecies of a single species, C. sativa;[1][2][3][4] or C. sativa may be accepted as a single undivided species.[5] The genus is widely accepted as being indigenous to and originating from Central Asia, with some researchers also including upper South Asia in its origin.[6][7]

The plant is also known as hemp, although this term is often used to refer only to varieties of Cannabis cultivated for non-drug use. Cannabis has long been used for hemp fibre, hemp seeds and their oils, hemp leaves for use as vegetables and as juice, medicinal purposes, and as a recreational drug. Industrial hemp products are made from cannabis plants selected to produce an abundance of fiber. To satisfy the UN Narcotics Convention, some cannabis strains have been bred to produce minimal levels of tetrahydrocannabinol (THC), the principal psychoactive constituent. Some strains have been selectively bred to produce a maximum of THC (a cannabinoid), the strength of which is enhanced by curing the flowers. Various compounds, including hashish and hash oil, are extracted from the plant.[8]

Globally, in 2013, 60,400 kilograms of cannabis were produced legally.[9] In 2014 there were an estimated 182.5 million cannabis users (3.8% of the population aged 15–64).[10] This percentage has not changed significantly between 1998 and 2014.[10]

Description

Cannabis is an annual, dioecious, flowering herb. The leaves are palmately compound or digitate, with serrate leaflets.[11] The first pair of leaves usually have a single leaflet, the number gradually increasing up to a maximum of about thirteen leaflets per leaf (usually seven or nine), depending on variety and growing conditions. At the top of a flowering plant, this number again diminishes to a single leaflet per leaf. The lower leaf pairs usually occur in an opposite leaf arrangement and the upper leaf pairs in an alternate arrangement on the main stem of a mature plant.

The leaves have a peculiar and diagnostic venation pattern that enables persons poorly familiar with the plant to distinguish a cannabis leaf from unrelated species that have confusingly similar leaves (see illustration). As is common in serrated leaves, each serration has a central vein extending to its tip. However, the serration vein originates from lower down the central vein of the leaflet, typically opposite to the position of, not the first notch down, but the next notch. This means that on its way from the midrib of the leaflet to the point of the serration, the vein serving the tip of the serration passes close by the intervening notch. Sometimes the vein will actually pass tangent to the notch, but often it will pass by at a small distance, and when that happens a spur vein (occasionally a pair of such spur veins) branches off and joins the leaf margin at the deepest point of the notch. This venation pattern varies slightly among varieties, but in general it enables one to tell Cannabis leaves from superficially similar leaves without difficulty and without special equipment. Tiny samples of Cannabis plants also can be identified with precision by microscopic examination of leaf cells and similar features, but that requires special expertise and equipment.[12]

Reproduction

All known strains of Cannabis are wind-pollinated[13] and the fruit is an achene.[14] Most strains of Cannabis are short day plants,[13] with the possible exception of C. sativa subsp. sativa var. spontanea (= C. ruderalis), which is commonly described as "auto-flowering" and may be day-neutral.

Cannabis is predominantly dioecious,[13][15] having imperfect flowers, with staminate "male" and pistillate "female" flowers occurring on separate plants.[16] "At a very early period the Chinese recognized the Cannabis plant as dioecious",[17] and the (c. 3rd century BCE) Erya dictionary defined xi "male Cannabis" and fu (or ju ) "female Cannabis".[18] Male flowers are normally borne on loose panicles, and female flowers are borne on racemes.[19]

Many monoecious varieties have also been described,[20] in which individual plants bear both male and female flowers.[21] (Although monoecious plants are often referred to as "hermaphrodites", true hermaphrodites – which are less common in Cannabis – bear staminate and pistillate structures together on individual flowers, whereas monoecious plants bear male and female flowers at different locations on the same plant.) Subdioecy (the occurrence of monoecious individuals and dioecious individuals within the same population) is widespread.[22][23][24] Many populations have been described as sexually labile.[25][26][27]

As a result of intensive selection in cultivation, Cannabis exhibits many sexual phenotypes that can be described in terms of the ratio of female to male flowers occurring in the individual, or typical in the cultivar.[28] Dioecious varieties are preferred for drug production, where the female flowers are used. Dioecious varieties are also preferred for textile fiber production, whereas monoecious varieties are preferred for pulp and paper production. It has been suggested that the presence of monoecy can be used to differentiate licit crops of monoecious hemp from illicit drug crops.[22] However, sativa strains often produce monoecious individuals, probably as a result of inbreeding.

File:Trichomes.jpg
Cannabis flower with visible trichomes
File:Cannabis male flowers.JPG
Male Cannabis flower buds

Sex determination

Cannabis has been described as having one of the most complicated mechanisms of sex determination among the dioecious plants.[28] Many models have been proposed to explain sex determination in Cannabis.

Based on studies of sex reversal in hemp, it was first reported by K. Hirata in 1924 that an XY sex-determination system is present.[26] At the time, the XY system was the only known system of sex determination. The X:A system was first described in Drosophila spp in 1925.[29] Soon thereafter, Schaffner disputed Hirata's interpretation,[30] and published results from his own studies of sex reversal in hemp, concluding that an X:A system was in use and that furthermore sex was strongly influenced by environmental conditions.[27]

Since then, many different types of sex determination systems have been discovered, particularly in plants.[15] Dioecy is relatively uncommon in the plant kingdom, and a very low percentage of dioecious plant species have been determined to use the XY system. In most cases where the XY system is found it is believed to have evolved recently and independently.[31]

Since the 1920s, a number of sex determination models have been proposed for Cannabis. Ainsworth describes sex determination in the genus as using "an X/autosome dosage type".[15]

The question of whether heteromorphic sex chromosomes are indeed present is most conveniently answered if such chromosomes were clearly visible in a karyotype. Cannabis was one of the first plant species to be karyotyped; however, this was in a period when karyotype preparation was primitive by modern standards (see History of Cytogenetics). Heteromorphic sex chromosomes were reported to occur in staminate individuals of dioecious "Kentucky" hemp, but were not found in pistillate individuals of the same variety. Dioecious "Kentucky" hemp was assumed to use an XY mechanism. Heterosomes were not observed in analyzed individuals of monoecious "Kentucky" hemp, nor in an unidentified German cultivar. These varieties were assumed to have sex chromosome composition XX.[32] According to other researchers, no modern karyotype of Cannabis had been published as of 1996.[33] Proponents of the XY system state that Y chromosome is slightly larger than the X, but difficult to differentiate cytologically.[34]

More recently, Sakamoto and various co-authors[35][36] have used RAPD to isolate several genetic marker sequences that they name Male-Associated DNA in Cannabis (MADC), and which they interpret as indirect evidence of a male chromosome. Several other research groups have reported identification of male-associated markers using RAPD and AFLP.[37][25][38] Ainsworth commented on these findings, stating,

Template:Quote

Environmental sex determination is known to occur in a variety of species.[39] Many researchers have suggested that sex in Cannabis is determined or strongly influenced by environmental factors.[27] Ainsworth reviews that treatment with auxin and ethylene have feminizing effects, and that treatment with cytokinins and gibberellins have masculinizing effects.[15] It has been reported that sex can be reversed in Cannabis using chemical treatment.[40] A PCR-based method for the detection of female-associated DNA polymorphisms by genotyping has been developed.[41]

Biochemistry and drugs

Cannabis plants produce a group of chemicals called cannabinoids, which produce mental and physical effects when consumed.

Cannabinoids, terpenoids, and other compounds are secreted by glandular trichomes that occur most abundantly on the floral calyxes and bracts of female plants.[42] As a drug it usually comes in the form of dried flower buds (marijuana), resin (hashish), or various extracts collectively known as hashish oil.[8] In the early 20th century, it became illegal in most of the world to cultivate or possess Cannabis for sale or personal use.

Chromosomes and genome

Cannabis, like many organisms, is diploid, having a chromosome complement of 2n=20, although polyploid individuals have been artificially produced.[43] The first genome sequence of Cannabis, which is estimated to be 820 Mb in size, was published in 2011 by a team of Canadian scientists.[44]

Taxonomy

The genus Cannabis was formerly placed in the nettle (Urticaceae) or mulberry (Moraceae) family, and later, along with the genus Humulus (hops), in a separate family, the hemp family (Cannabaceae sensu stricto).[45] Recent phylogenetic studies based on cpDNA restriction site analysis and gene sequencing strongly suggest that the Cannabaceae sensu stricto arose from within the former family Celtidaceae, and that the two families should be merged to form a single monophyletic family, the Cannabaceae sensu lato.[46][47]

Various types of Cannabis have been described, and variously classified as species, subspecies, or varieties:[48]

  • plants cultivated for fiber and seed production, described as low-intoxicant, non-drug, or fiber types.
  • plants cultivated for drug production, described as high-intoxicant or drug types.
  • escaped, hybridised, or wild forms of either of the above types.

Cannabis plants produce a unique family of terpeno-phenolic compounds called cannabinoids, some of which produce the "high" which may be experienced from consuming marijuana. There are 483 identifiable chemical constituents known to exist in the cannabis plant,[49] and at least 85 different cannabinoids have been isolated from the plant.[50] The two cannabinoids usually produced in greatest abundance are cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC), but only THC is psychoactive.[51] Since the early 1970s, Cannabis plants have been categorized by their chemical phenotype or "chemotype", based on the overall amount of THC produced, and on the ratio of THC to CBD.[52] Although overall cannabinoid production is influenced by environmental factors, the THC/CBD ratio is genetically determined and remains fixed throughout the life of a plant.[37] Non-drug plants produce relatively low levels of THC and high levels of CBD, while drug plants produce high levels of THC and low levels of CBD. When plants of these two chemotypes cross-pollinate, the plants in the first filial (F1) generation have an intermediate chemotype and produce intermedite amounts of CBD and THC. Female plants of this chemotype may produce enough THC to be utilized for drug production.[52][53]

File:Cannabis-vegetative-growth-00003.jpg
Top of Cannabis plant in vegetative growth stage

Whether the drug and non-drug, cultivated and wild types of Cannabis constitute a single, highly variable species, or the genus is polytypic with more than one species, has been a subject of debate for well over two centuries. This is a contentious issue because there is no universally accepted definition of a species.[54] One widely applied criterion for species recognition is that species are "groups of actually or potentially interbreeding natural populations which are reproductively isolated from other such groups."[55] Populations that are physiologically capable of interbreeding, but morphologically or genetically divergent and isolated by geography or ecology, are sometimes considered to be separate species.[55] Physiological barriers to reproduction are not known to occur within Cannabis, and plants from widely divergent sources are interfertile.[43] However, physical barriers to gene exchange (such as the Himalayan mountain range) might have enabled Cannabis gene pools to diverge before the onset of human intervention, resulting in speciation.[56] It remains controversial whether sufficient morphological and genetic divergence occurs within the genus as a result of geographical or ecological isolation to justify recognition of more than one species.[57][58][59]

Early classifications

File:Cannab2 new.png
Relative size of varieties of Cannabis

The genus Cannabis was first classified using the "modern" system of taxonomic nomenclature by Carl Linnaeus in 1753, who devised the system still in use for the naming of species.[60] He considered the genus to be monotypic, having just a single species that he named Cannabis sativa L. (L. stands for Linnaeus, and indicates the authority who first named the species). Linnaeus was familiar with European hemp, which was widely cultivated at the time. In 1785, noted evolutionary biologist Jean-Baptiste de Lamarck published a description of a second species of Cannabis, which he named Cannabis indica Lam.[61] Lamarck based his description of the newly named species on plant specimens collected in India. He described C. indica as having poorer fiber quality than C. sativa, but greater utility as an inebriant. Additional Cannabis species were proposed in the 19th century, including strains from China and Vietnam (Indo-China) assigned the names Cannabis chinensis Delile, and Cannabis gigantea Delile ex Vilmorin.[62] However, many taxonomists found these putative species difficult to distinguish. In the early 20th century, the single-species concept was still widely accepted, except in the Soviet Union where Cannabis continued to be the subject of active taxonomic study. The name Cannabis indica was listed in various Pharmacopoeias, and was widely used to designate Cannabis suitable for the manufacture of medicinal preparations.[63]

20th century

In 1924, Russian botanist D.E. Janichevsky concluded that ruderal Cannabis in central Russia is either a variety of C. sativa or a separate species, and proposed C. sativa L. var. ruderalis Janisch, and Cannabis ruderalis Janisch, as alternative names.[48] In 1929, renowned plant explorer Nikolai Vavilov assigned wild or feral populations of Cannabis in Afghanistan to C. indica Lam. var. kafiristanica Vav., and ruderal populations in Europe to C. sativa L. var. spontanea Vav.[53][62] In 1940, Russian botanists Serebriakova and Sizov proposed a complex classification in which they also recognized C. sativa and C. indica as separate species. Within C. sativa they recognized two subspecies: C. sativa L. subsp. culta Serebr. (consisting of cultivated plants), and C. sativa L. subsp. spontanea (Vav.) Serebr. (consisting of wild or feral plants). Serebriakova and Sizov split the two C. sativa subspecies into 13 varieties, including four distinct groups within subspecies culta. However, they did not divide C. indica into subspecies or varieties.[48][64]

In the 1970s, the taxonomic classification of Cannabis took on added significance in North America. Laws prohibiting Cannabis in the United States and Canada specifically named products of C. sativa as prohibited materials. Enterprising attorneys for the defense in a few drug busts argued that the seized Cannabis material may not have been C. sativa, and was therefore not prohibited by law. Attorneys on both sides recruited botanists to provide expert testimony. Among those testifying for the prosecution was Dr. Ernest Small, while Dr. Richard E. Schultes and others testified for the defense. The botanists engaged in heated debate (outside of court), and both camps impugned the other's integrity.[57][58] The defense attorneys were not often successful in winning their case, because the intent of the law was clear.[65]

In 1976, Canadian botanist Ernest Small[66] and American taxonomist Arthur Cronquist published a taxonomic revision that recognizes a single species of Cannabis with two subspecies: C. sativa L. subsp. sativa, and C. sativa L. subsp. indica (Lam.) Small & Cronq.[62] The authors hypothesized that the two subspecies diverged primarily as a result of human selection; C. sativa subsp. sativa was presumably selected for traits that enhance fiber or seed production, whereas C. sativa subsp. indica was primarily selected for drug production. Within these two subspecies, Small and Cronquist described C. sativa L. subsp. sativa var. spontanea Vav. as a wild or escaped variety of low-intoxicant Cannabis, and C. sativa subsp. indica var. kafiristanica (Vav.) Small & Cronq. as a wild or escaped variety of the high-intoxicant type. This classification was based on several factors including interfertility, chromosome uniformity, chemotype, and numerical analysis of phenotypic characters.[52][62][67]

Professors William Emboden, Loran Anderson, and Harvard botanist Richard E. Schultes and coworkers also conducted taxonomic studies of Cannabis in the 1970s, and concluded that stable morphological differences exist that support recognition of at least three species, C. sativa, C. indica, and C. ruderalis.[68][69][70][71] For Schultes, this was a reversal of his previous interpretation that Cannabis is monotypic, with only a single species.[72] According to Schultes' and Anderson's descriptions, C. sativa is tall and laxly branched with relatively narrow leaflets, C. indica is shorter, conical in shape, and has relatively wide leaflets, and C. ruderalis is short, branchless, and grows wild in Central Asia. This taxonomic interpretation was embraced by Cannabis aficionados who commonly distinguish narrow-leafed "sativa" strains from wide-leafed "indica" strains.[73]

Continuing research

Molecular analytical techniques developed in the late 20th century are being applied to questions of taxonomic classification. This has resulted in many reclassifications based on evolutionary systematics. Several studies of Random Amplified Polymorphic DNA (RAPD) and other types of genetic markers have been conducted on drug and fiber strains of Cannabis, primarily for plant breeding and forensic purposes.[74][75][25][76][77] Dutch Cannabis researcher E.P.M. de Meijer and coworkers described some of their RAPD studies as showing an "extremely high" degree of genetic polymorphism between and within populations, suggesting a high degree of potential variation for selection, even in heavily selected hemp cultivars.[37] They also commented that these analyses confirm the continuity of the Cannabis gene pool throughout the studied accessions, and provide further confirmation that the genus consists of a single species, although theirs was not a systematic study per se.

Karl W. Hillig, a graduate student in the laboratory of long-time Cannabis researcher Paul G. Mahlberg[78] at Indiana University, conducted a systematic investigation of genetic, morphological, and chemotaxonomic variation among 157 Cannabis accessions of known geographic origin, including fiber, drug, and feral populations. In 2004, Hillig and Mahlberg published a chemotaxonomic analysis of cannabinoid variation in their Cannabis germplasm collection. They used gas chromatography to determine cannabinoid content and to infer allele frequencies of the gene that controls CBD and THC production within the studied populations, and concluded that the patterns of cannabinoid variation support recognition of C. sativa and C. indica as separate species, but not C. ruderalis.[53] The authors assigned fiber/seed landraces and feral populations from Europe, Central Asia, and Turkey to C. sativa. Narrow-leaflet and wide-leaflet drug accessions, southern and eastern Asian hemp accessions, and feral Himalayan populations were assigned to C. indica. In 2005, Hillig published a genetic analysis of the same set of accessions (this paper was the first in the series, but was delayed in publication), and proposed a three-species classification, recognizing C. sativa, C. indica, and (tentatively) C. ruderalis.[56] In his doctoral dissertation published the same year, Hillig stated that principal components analysis of phenotypic (morphological) traits failed to differentiate the putative species, but that canonical variates analysis resulted in a high degree of discrimination of the putative species and infraspecific taxa.[79] Another paper in the series on chemotaxonomic variation in the terpenoid content of the essential oil of Cannabis revealed that several wide-leaflet drug strains in the collection had relatively high levels of certain sesquiterpene alcohols, including guaiol and isomers of eudesmol, that set them apart from the other putative taxa.[80] Hillig concluded that the patterns of genetic, morphological, and chemotaxonomic variation support recognition of C. sativa and C. indica as separate species. He also concluded there is little support to treat C. ruderalis as a separate species from C. sativa at this time, but more research on wild and weedy populations is needed because they were underrepresented in their collection.

In September 2005, New Scientist reported that researchers at the Canberra Institute of Technology had identified a new type of Cannabis based on analysis of mitochondrial and chloroplast DNA.[81] The New Scientist story, which was picked up by many news agencies and web sites, indicated that the research was to be published in the journal Forensic Science International.[82]

Despite advanced analytical techniques, much of the cannabis used recreationally is inaccurately classified. One laboratory at the University of British Columbia found that Jamaican Lamb's Bread, claimed to be 100% sativa, was in fact almost 100% indica (the opposite strain).[83] Legalization of cannabis in Canada (Template:As of) may help spur private-sector research, especially in terms of diversification of strains. It should also improve classification accuracy for cannabis used recreationally. Legalization coupled with Canadian government (Health Canada) oversight of production and labelling will likely result in more—and more accurate—testing to determine exact strains and content. Furthermore, the rise of craft cannabis growers in Canada should ensure quality, experimentation/research, and diversification of strains among private-sector producers.[84]

Popular usage

The scientific debate regarding taxonomy has had little effect on the terminology in widespread use among cultivators and users of drug-type Cannabis. Cannabis aficionados recognize three distinct types based on such factors as morphology, native range, aroma, and subjective psychoactive characteristics. Sativa is the most widespread variety, which is usually tall, laxly branched, and found in warm lowland regions. Indica designates shorter, bushier plants adapted to cooler climates and highland environments. Ruderalis is the informal name for the short plants that grow wild in Europe and Central Asia.

Breeders, seed companies, and cultivators of drug type Cannabis often describe the ancestry or gross phenotypic characteristics of cultivars by categorizing them as "pure indica", "mostly indica", "indica/sativa", "mostly sativa", or "pure sativa".

Uses

Cannabis is used for a wide variety of purposes.

History

The use of Cannabis as a mind-altering drug has been documented by archaeological finds in prehistoric societies in Eurasia and Africa.[85] The oldest written record of cannabis usage is the Greek historian Herodotus's reference to the central Eurasian Scythians taking cannabis steam baths.[86] His (c. 440 BCE) Histories records, "The Scythians, as I said, take some of this hemp-seed [presumably, flowers], and, creeping under the felt coverings, throw it upon the red-hot stones; immediately it smokes, and gives out such a vapour as no Grecian vapour-bath can exceed; the Scyths, delighted, shout for joy."[87] Classical Greeks and Romans were using cannabis, while in the Middle East, use spread throughout the Islamic empire to North Africa. In 1545, cannabis spread to the western hemisphere where Spaniards imported it to Chile for its use as fiber. In North America, cannabis, in the form of hemp, was grown for use in rope, clothing and paper.[88][89][90][91]

Recreational use

Template:Main

File:Drug danger and dependence.svg
Comparison of physical harm and dependence regarding various drugs[92]
File:Marijuana-Cannabis-Weed-Bud-Gram.jpg
A dried bud, typical of what is sold for drug use

Cannabis is a popular recreational drug around the world, only behind alcohol, caffeine and tobacco. In the United States alone, it is believed that over 100 million Americans have tried cannabis, with 25 million Americans having used it within the past year.Template:When[93]

The psychoactive effects of cannabis are known to have a triphasic nature. Primary psychoactive effects include a state of relaxation, and to a lesser degree, euphoria from its main psychoactive compound, tetrahydrocannabinol. Secondary psychoactive effects, such as a facility for philosophical thinking, introspection and metacognition have been reported among cases of anxiety and paranoia.[94] Finally, the tertiary psychoactive effects of the drug cannabis, can include an increase in heart rate and hunger, believed to be caused by 11-OH-THC, a psychoactive metabolite of THC produced in the liver.

Normal cognition is restored after approximately three hours for larger doses via a smoking pipe, bong or vaporizer.[94] However, if a large amount is taken orally the effects may last much longer. After 24 hours to a few days, minuscule psychoactive effects may be felt, depending on dosage, frequency and tolerance to the drug.

File:White pineapple cart.jpg
Commercial cannabis extract

Various forms of the drug cannabis exist, including extracts such as hashish and hash oil[8] which, because of appearance, are more susceptible to adulterants when left unregulated.

Cannabidiol (CBD), which has no psychotropic effects by itself[51] (although sometimes showing a small stimulant effect, similar to caffeine),[95] attenuates, or reduces[96] the higher anxiety levels caused by THC alone.[97]

According to Delphic analysis by British researchers in 2007, cannabis has a lower risk factor for dependence compared to both nicotine and alcohol.[98] However, everyday use of cannabis may be correlated with psychological withdrawal symptoms, such as irritability or insomnia,[94] and susceptibility to a panic attack may increase as levels of THC metabolites rise.[99][100] However, cannabis withdrawal symptoms are typically mild and are never life-threatening.[101]

Risk of adverse outcomes from cannabis use may be reduced by implementation of evidence-based education and intervention tools communicated to the public with practical regulation measures.[102]

Medical use

Template:Main Medical cannabis (or medical marijuana) refers to the use of cannabis and its constituent cannabinoids, to treat disease or improve symptoms. Cannabis is used to reduce nausea and vomiting during chemotherapy, to improve appetite in people with HIV/AIDS, and to treat chronic pain and muscle spasms.[103][104] Cannabinoids are under preliminary research for their potential to affect stroke.[105]

Short-term use increases both minor and major adverse effects.[104] Common side effects include dizziness, feeling tired, vomiting, and hallucinations.[104] Long-term effects of cannabis are not clear.[106] Concerns including memory and cognition problems, risk of addiction, schizophrenia in young people, and the risk of children taking it by accident.[103]

Industrial use (hemp)

File:ANCIENT SANSKRIT ON HEMP BASED PAPER. HEMP WAS A COMMON AND DURABLE FIBRE IN THE PRODUCTION OF "RAG" PAPER FROM 200 BCE TO THE 1850 AD.jpg
Ancient Sanskrit on hemp-based paper. Hemp fiber was commonly used in the production of paper from 200 BCE to the late 1800s.

Template:Main

File:Cannabis Sativa Querschnitt.JPG
Cannabis sativa stem longitudinal section

The term hemp is used to name the durable soft fiber from the Cannabis plant stem (stalk). Cannabis sativa cultivars are used for fibers due to their long stems; Sativa varieties may grow more than six metres tall. However, hemp can refer to any industrial or foodstuff product that is not intended for use as a drug. Many countries regulate limits for psychoactive compound (THC) concentrations in products labeled as hemp.

Cannabis for industrial uses is valuable in tens of thousands of commercial products, especially as fibre[107] ranging from paper, cordage, construction material and textiles in general, to clothing. Hemp is stronger and longer-lasting than cotton. It also is a useful source of foodstuffs (hemp milk, hemp seed, hemp oil) and biofuels. Hemp has been used by many civilizations, from China to Europe (and later North America) during the last 12,000 years.[107][108] In modern times novel applications and improvements have been explored with modest commercial success.[109][110]

Ancient and religious uses

Template:Main

The Cannabis plant has a history of medicinal use dating back thousands of years across many cultures.[111] The Yanghai Tombs, a vast ancient cemetery (54 000 m2) situated in the Turfan district of the Xinjiang Uyghur Autonomous Region in northwest China, have revealed the 2700-year-old grave of a shaman. He is thought to have belonged to the Jushi culture recorded in the area centuries later in the Hanshu, Chap 96B.[112] Near the head and foot of the shaman was a large leather basket and wooden bowl filled with 789g of cannabis, superbly preserved by climatic and burial conditions. An international team demonstrated that this material contained tetrahydrocannabinol, the psychoactive component of cannabis. The cannabis was presumably employed by this culture as a medicinal or psychoactive agent, or an aid to divination. This is the oldest documentation of cannabis as a pharmacologically active agent.[113]

Settlements which date from c. 2200–1700 BCE in the Bactria and Margiana contained elaborate ritual structures with rooms containing everything needed for making drinks containing extracts from poppy (opium), hemp (cannabis), and ephedra (which contains ephedrine).[114] Although there is no evidence of ephedra being used by steppe tribes, they engaged in cultic use of hemp. Cultic use ranged from Romania to the Yenisei River and had begun by 3rd millennium BC Smoking hemp has been found at Pazyryk.[115]

Cannabis is first referred to in Hindu Vedas between 2000 and 1400 BCE, in the Atharvaveda. By the 10th century CE, it has been suggested that it was referred to by some in India as "food of the gods".[116] Cannabis use eventually became a ritual part of the Hindu festival of Holi. One of the earliest to use this plant in medical purposes was Korakkar, one of the 18 Siddhas.[117][118] The plant is called Korakkar Mooli in the Tamil language, meaning Korakkar's herb.[119][120]

In Buddhism, cannabis is generally regarded as an intoxicant and may be a hindrance to development of meditation and clear awareness. In ancient Germanic culture, Cannabis was associated with the Norse love goddess, Freya.[121][122] An anointing oil mentioned in Exodus is, by some translators, said to contain Cannabis.[123] Sufis have used Cannabis in a spiritual context since the 13th century CE.[124]

In modern times, the Rastafari movement has embraced Cannabis as a sacrament.[125] Elders of the Ethiopian Zion Coptic Church, a religious movement founded in the United States in 1975 with no ties to either Ethiopia or the Coptic Church, consider Cannabis to be the Eucharist, claiming it as an oral tradition from Ethiopia dating back to the time of Christ.[126] Like the Rastafari, some modern Gnostic Christian sects have asserted that Cannabis is the Tree of Life.[127][128] Other organized religions founded in the 20th century that treat Cannabis as a sacrament are the THC Ministry,[129] Cantheism,[130] the Cannabis Assembly[131] and the Church of Cognizance. Rastafarians tend to be among the biggest consumers of modern Cannabis use.

Cannabis is frequently used among Sufis[132] – the mystical interpretation of Islam that exerts strong influence over local Muslim practices in Bangladesh, India, Indonesia, Turkey, and Pakistan. Cannabis preparations are frequently used at Sufi festivals in those countries.[132] Pakistan's Shrine of Lal Shahbaz Qalandar in Sindh province is particularly renowned for the widespread use of cannabis at the shrine's celebrations, especially its annual Urs festival and Thursday evening dhamaal sessions - or meditative dancing sessions.[133][134]

Etymology

Template:Main

The word cannabis is from Greek {{#invoke:lang|lang}} ({{#invoke:lang|lang}}) (see Latin {{#invoke:lang|lang}}),[135] which was originally Scythian or Thracian.[136] It is related to the Persian kanab, the English canvas and possibly even to the English hemp (Old English {{#invoke:lang|lang}}).[136] In modern Hebrew, Template:Hebrew Template:Transl (modern pronunciation: Template:IPA-he) is used but there are those who have theorized that it was referred to in antiquity as קני בושם Template:Transl, a component of the biblical anointing oil.[137][138] Old Akkadian qunnabtu, Neo-Assyrian and Neo-Babylonian qunnabu were used to refer to the plant meaning "a way to produce smoke".[139][140][141]

See also

Template:Portal

References

1 }}
     | references-column-width 
     | references-column-count references-column-count-{{#if:1|30em}} }}
   | {{#if: 
     | references-column-width }} }}" style="{{#if: 30em
   | {{#iferror: {{#ifexpr: 30em > 1 }}
     | Template:Column-width
     | Template:Column-count }}
   | {{#if: 
     | Template:Column-width }} }} list-style-type: {{#switch: 
   | upper-alpha
   | upper-roman
   | lower-alpha
   | lower-greek
   | lower-roman = {{{group}}}
   | #default = decimal}};">
  1. Cite error: Invalid <ref> tag; no text was provided for refs named GuyWhittle2004
  2. Template:Cite web
  3. Template:Cite web
  4. Template:Cite web
  5. Template:Cite web
  6. Template:Cite book
  7. Template:Cite book
  8. 8.0 8.1 8.2 Erowid. 2006. Cannabis Basics. Retrieved on 25 February 2007
  9. Template:Cite book
  10. 10.0 10.1 Template:Cite book
  11. Template:Cite web
  12. Watt, John Mitchell; Breyer-Brandwijk, Maria Gerdina: The Medicinal and Poisonous Plants of Southern and Eastern Africa 2nd ed Pub. E & S Livingstone 1962
  13. 13.0 13.1 13.2 Clarke, Robert C. 1991. Marijuana Botany, 2nd ed. Ron Publishing, California. Template:ISBNTemplate:Page needed
  14. Template:Cite journal
  15. 15.0 15.1 15.2 15.3 Template:Cite journal
  16. Template:Cite journal
  17. Li Hui-Lin (1973). "The Origin and Use of Cannabis in Eastern Asia: Linguistic-Cultural Implications", Economic Botany 28.3: 293–301, p. 294.
  18. 13/99 and 13/133. In addition, 13/98 defined fen 蕡 "Cannabis inflorescence" and 13/159 bo 薜 "wild Cannabis".
  19. Bouquet, R. J. 1950. Cannabis. United Nations Office on Drugs and Crime. Retrieved on 23 February 2007
  20. de Meijer, E. P. M. 1999. Cannabis germplasm resources. In: Ranalli P. (ed.). Advances in Hemp Research, Haworth Press, Binghamton, NY, pp. 131–151. Template:ISBN
  21. Template:Cite journal
  22. 22.0 22.1 Template:Cite web
  23. Template:Cite journal
  24. Template:Cite journal
  25. 25.0 25.1 25.2 Template:Cite journal
  26. 26.0 26.1 Template:Cite journal
  27. 27.0 27.1 27.2 Template:Cite journal
  28. 28.0 28.1 Template:Cite journal
  29. Template:Cite journal
  30. Template:Cite journal
  31. Template:Cite journal
  32. Template:Cite journal
  33. Template:Cite journal
  34. Template:Cite journal
  35. Template:Cite journal
  36. Template:Cite journal
  37. 37.0 37.1 37.2 Template:Cite journal
  38. Template:Cite journal
  39. Template:Cite journal
  40. Template:Cite journal
  41. Template:Cite journal
  42. Template:Cite journal
  43. 43.0 43.1 Template:Cite journal
  44. Template:Cite journal
  45. Schultes, R. E., A. Hofmann, and C. Rätsch. 2001. The nectar of delight. In: Plants of the Gods 2nd ed., Healing Arts Press, Rochester, Vermont, pp. 92–101. Template:ISBN
  46. Template:Cite journal
  47. Template:Cite journal
  48. 48.0 48.1 48.2 Template:Cite journal
  49. Template:Cite web
  50. Template:Cite journal
  51. 51.0 51.1 Template:Cite journal
  52. 52.0 52.1 52.2 Template:Cite journal
  53. 53.0 53.1 53.2 Template:Cite journal
  54. Small, E. 1979. Fundamental aspects of the species problem in biology. In: The Species Problem in Cannabis, vol. 1: Science. Corpus Information Services, Toronto, Canada, pp. 5–63. Template:ISBN
  55. 55.0 55.1 Rieger, R., A. Michaelis, and M. M. Green. 1991. Glossary of Genetics, 5th ed. Springer-Verlag, pp. 458–459. Template:ISBN
  56. 56.0 56.1 Template:Cite journal
  57. 57.0 57.1 Template:Cite journal
  58. 58.0 58.1 Template:Cite journal
  59. Schultes, R. E., and A. Hofmann. 1980. Botany and Chemistry of Hallucinogens. C. C. Thomas, Springfield, Illinois, pp. 82–116. Template:ISBN
  60. Linnaeus, C. 1753. Species Plantarum 2: 1027. Salvius, Stockholm. [Facsimile edition, 1957–1959. Ray Society, London, U.K.]
  61. de Lamarck, J.B. 1785. Encyclopédie Méthodique de Botanique, vol. 1, pt. 2. Paris, France, pp. 694–695
  62. 62.0 62.1 62.2 62.3 Template:Cite journal
  63. Template:Cite journal
  64. Serebriakova T. Ya. and I. A. Sizov. 1940. Cannabinaceae Lindl. In: Vavilov N. I. (ed.), Kulturnaya Flora SSSR, vol. 5, Moscow-Leningrad, USSR, pp. 1–53. [in Russian]
  65. Template:Cite journal
  66. Ernest Small (biography) Template:Webarchive. National Research Council Canada. Retrieved on 23 February 2007
  67. Template:Cite journal
  68. Template:Cite journal
  69. Anderson, L. C. 1974. A study of systematic wood anatomy in Cannabis. Harvard University Botanical Museum Leaflets 24: 29–36. Retrieved on 23 February 2007
  70. Anderson, L. C. 1980. Leaf variation among Cannabis species from a controlled garden. Harvard University Botanical Museum Leaflets 28: 61–69. Retrieved on 23 February 2007
  71. Template:Cite journal
  72. Schultes, R. E. 1970. Random thoughts and queries on the botany of Cannabis. In: Joyce, C. R. B. and Curry, S. H. (eds), The Botany and Chemistry of Cannabis. J. & A. Churchill, London, pp. 11–38.
  73. Interview with Robert Connell Clarke. 1 January 2005. NORML, New Zealand. Retrieved on 19 February 2007
  74. Template:Cite journal
  75. Template:Cite journal
  76. Template:Cite journal
  77. Template:Cite journal
  78. Dr. Paul G. Mahlberg's Cannabis Research. North American Industrial Hemp Council. Retrieved on 23 February 2007
  79. Hillig, Karl William. 2005. A systematic investigation of Cannabis. Doctoral Dissertation. Department of Biology, Indiana University. Bloomington, Indiana. Published by UMI. Retrieved on 23 February 2007 Template:Webarchive
  80. Template:Cite journal
  81. 2005. Rasta lends its name to a third type of Cannabis. New Scientist 2517: 12. Retrieved on 24 February 2007
  82. Template:Cite journal
  83. Template:Cite news
  84. Template:Cite web
  85. Ernest Abel, Marijuana, The First 12,000 years (Plenum Press, New York 1980)
  86. Template:Cite journal
  87. Template:Cite web
  88. Template:Cite web
  89. Chris Conrad, HEMP, Lifeline to the Future (Template:ISBN)
  90. Jack Herer, The Emperor Wears No Clothes (Template:ISBN)
  91. Peter Stratford, Psychedelics Encyclopaedia (Template:ISBN)
  92. Template:Cite web
  93. Template:Cite web
  94. 94.0 94.1 94.2 Template:Cite web
  95. Template:Cite journal
  96. Template:Cite journal
  97. Template:Cite journal
  98. Template:Cite journal
  99. Template:Cite web
  100. Template:Cite web
  101. Template:Cite web
  102. Template:Cite journal
  103. 103.0 103.1 Template:Cite journal
  104. 104.0 104.1 104.2 Template:Cite journal
  105. Template:Cite journal
  106. Template:Cite journal
  107. 107.0 107.1 Template:Cite web
  108. Template:Cite web
  109. Template:Cite journal
  110. Template:Cite web
  111. Template:Cite journal
  112. Hulsewé (1979), p. 183.
  113. Template:Cite journal
  114. Mallory and Mair (2000), p. 262.
  115. Mallory and Mair (2000), p. 306.
  116. Template:Cite web Chapter 1: Cannabis in the Ancient World. India: The First Marijuana-Oriented Culture.
  117. Template:Cite book
  118. Template:Cite book
  119. Template:Cite book
  120. Template:Cite book
  121. Template:Cite book Template:ISBN.
  122. Template:Cite web
  123. Template:Cite book
  124. Template:Cite book
  125. Template:Cite book
  126. Template:Cite web
  127. Template:Cite web
  128. Template:Cite book
  129. Template:Cite web
  130. Template:Cite web
  131. Template:Cite web
  132. 132.0 132.1 Template:Cite book
  133. Template:Cite news
  134. Template:Cite book
  135. "cannabis" OED Online. July 2009. Oxford University Press. 2009. [1]
  136. 136.0 136.1 Template:Cite web
  137. Template:Cite web
  138. Template:Cite web
  139. Template:Cite book
  140. Template:Cite book
  141. Template:Cite book

Further reading

Template:Refbegin

Template:Refend

External links

Template:Sisterlinks

Template:Cannabis Template:Navboxes Template:Taxonbar